Fuel cell vehicles #ijsrd

Standard

IJSRD is a leading e-journal, under which we are encouraging and exploring newer ideas of current trends in Engineering and Science by publishing papers containing pure knowledge. The Journal is started with noble effort to help the researchers in their work and also to share knowledge and research ideas. All research interested scholars are given best opportunity to make world aware of their work. With precise and analytical narration of knowledge by our reviewers, our journal is providing implemental economy and latest global transposition to research. This monthly journal is mainly started to help researching peers belongs to Undergraduate, Postgraduate and Research students.We publish original and high quality papers. We aim to cover the latest outstanding development in the fields of Engineering and Technologies. All the published papers are submitted to the major indexing services for indexing.

FCV-icon1

Zero-emission cars that run on hydrogen

Fuel cell” vehicles have been long promised, as they potentially offer several major advantages over electric and hydrocarbon-powered vehicles. However, the technology has only now begun to reach the stage where automotive companies are planning to launch them for consumers. Initial prices are likely to be in the range of $70,000, but should come down significantly as volumes increase within the next couple of years.

Unlike batteries, which must be charged from an external source, fuel cells generate electricity directly, using fuels such as hydrogen or natural gas. In practice, fuel cells and batteries are combined, with the fuel cell generating electricity and the batteries storing this energy until demanded by the motors that drive the vehicle. Fuel cell vehicles are therefore hybrids, and will likely also deploy regenerative braking – a key capability for maximizing efficiency and range.

Unlike battery-powered electric vehicles, fuel cell vehicles behave as any conventionally fuelled vehicle. With a long cruising range – up to 650 km per tank (the fuel is usually compressed hydrogen gas) – a hydrogen fuel refill only takes about three minutes. Hydrogen is clean-burning, producing only water vapour as waste, so fuel cell vehicles burning hydrogen will be zero-emission, an important factor given the need to reduce air pollution.

There are a number of ways to produce hydrogen without generating carbon emissions. Most obviously, renewable sources of electricity from wind and solar sources can be used to electrolyse water – though the overall energy efficiency of this process is likely to be quite low. Hydrogen can also be split from water in high-temperature nuclear reactors or generated from fossil fuels such as coal or natural gas, with the resulting CO2 captured and sequestered rather than released into the atmosphere.

As well as the production of cheap hydrogen on a large scale, a significant challenge is the lack of a hydrogen distribution infrastructure that would be needed to parallel and eventually replace petrol and diesel filling stations. Long distance transport of hydrogen, even in a compressed state, is not considered economically feasible today. However, innovative hydrogen storage techniques, such as organic liquid carriers that do not require high-pressure storage, will soon lower the cost of long-distance transport and ease the risks associated with gas storage and inadvertent release.

Mass-market fuel cell vehicles are an attractive prospect, because they will offer the range and fuelling convenience of today’s diesel and petrol-powered vehicles while providing the benefits of sustainability in personal transportation. Achieving these benefits will, however, require the reliable and economical production of hydrogen from entirely low-carbon sources, and its distribution to a growing fleet of vehicles (expected to number in the many millions within a decade).

For More information visit www.ijsrd.com

Advertisements

IJSRD & TechFest 2014-15 (IIT-Bombay) presents TISC(Conference)

Standard

IJSRD is pleased to inform you that IIT Bombay presents Asia’s Largest Science and Technology Festival. TISC(Conference) event is supported by IJSRD. Techfest International Student Conference is an initiative to bring together the student community and professors with a common research background. TISC marks a step further in our endeavor to promote science and technology among the students by facilitating the exchange of knowledge between academia and industry. For more details, please visit the following link: www.techfest.org/conference

IJSRD is a leading e-journal, under which we are encouraging and exploring newer ideas of current trends in Engineering and Science by publishing papers containing pure knowledge. IJSRD is mainly started to help researching peers belongs to Undergraduate, Postgraduate and Research students. IJSRD aims to cover the latest outstanding development in the fields of Engineering and Technologies.For submitting paper online, click here: Submit Manuscript Online

ISSN (Online) : 2321-0613
Subject Category : Engineering Science and Technology
Frequency : Monthly, 12 issues per year
Published by : I.J.S.R.D. , INDIA
Impact Factor : 1.26

Medicine: Touch sensitive bionic arm | IJSRD

Standard

Researchers at the Cleveland Veterans Affairs Medical Center and Case Western Reserve University have developed a new kind of interface that can convey a sense of touch from 20 spots on a prosthetic hand. It does this by directly stimulating nerve bundles—known as peripheral nerves—in the arms of patients; two people have so far been fitted with the interface. What’s more, the implants continue to work after 18 months, a noteworthy milestone given that electrical interfaces to nerve tissue can gradually degrade in performance.

to view main article click here

blog

Research Lets do it !!! IJSRD 

Reason why it made the list: these breakthroughs in connecting electronic devices through the nervous system can eventually enable everything from artificial limbs to sensory organs like eyes and ears. It’ll probably be a while before we can plug into the Matrix though…

for more information click here

#Techfest International Student #Conference #IJSRD – IIT Bombay

Standard

conferenceTechfest International Student Conference is an initiative to bring together the student community and professors with a common research background. TISC marks a step further in our endeavor to promote science and technology among the students by facilitating the exchange of knowledge between academia and industry.

Featured imageTechfest International Student Conference presents a unique opportunity for students to present their work in front of fellow students, senior professors from top universities, industrialists and policy-makers. It aims at giving recognition to students for their research at a relatively young age. An enriching experience to research oriented minds, TISC will give young scientists an insight into the topic, learn new ideas and build networks beneficial for the future.

The theme for the conference is Renewable Energy Systems, potentially the most important aspect of human life in forthcoming decades. TISC is being hosted by IIT Bombay, one of the premier institutes of science and technology in India known for its path-breaking research and quality education.

#IJSRD | Wireless Phone Charger: the uniqueness and the features

Standard

Wowhoo Wireless Phone Charger: the uniqueness and the features
blog#IJSRD | Research Lets Do it… #call for paper

Major wireless phone carriers have all been adapting the Qi wireless technology. Additionally many car manufactures are adding them to their 2014-2015 models. Manufactures include but are not limited to the following: Jeep, Toyota, Prius Harrier, Mercedes Benz, BMW, Volkswagen, Audi aswell as Porsche.

Due to the new and improved design and usability our initial launch date has been revised from Jan 7th to March 1st. we added approximately 8mm to our diameter to allow a better internal design.  The small revision to the Wowhoo charger allow us to get that quicker charge which is most important. The 10% is a big jump in charging speed.

for more details click here

Fusion Reactor Concept Could Be Cheaper Than Coal

Standard
University of Washington
Summary:
Engineers have designed a concept for a fusion reactor that, when scaled up to the size of a large electrical power plant, would rival costs for a new coal-fired plant with similar electrical output.
blog
Research . .  ? ?  Lets Do IT… #IJSRD

Fusion energy almost sounds too good to be true — zero greenhouse gas emissions, no long-lived radioactive waste, a nearly unlimited fuel supply.

Perhaps the biggest roadblock to adopting fusion energy is that the economics haven’t penciled out. Fusion power designs aren’t cheap enough to outperform systems that use fossil fuels such as coal and natural gas.

IJSRD is a leading e-journal, under which we are encouraging and exploring newer ideas of current trends in Engineering and Science by publishing papers containing pure knowledge.

University of Washington engineers hope to change that. They have designed a concept for a fusion reactor that, when scaled up to the size of a large electrical power plant, would rival costs for a new coal-fired plant with similar electrical output.

The team published its reactor design and cost-analysis findings last spring and will present results Oct. 17 at the International Atomic Energy Agency’s Fusion Energy Conference in St. Petersburg, Russia.

“Right now, this design has the greatest potential of producing economical fusion power of any current concept,” said Thomas Jarboe, a UW professor of aeronautics and astronautics and an adjunct professor in physics.

The UW’s reactor, called the dynomak, started as a class project taught by Jarboe two years ago. After the class ended, Jarboe and doctoral student Derek Sutherland — who previously worked on a reactor design at the Massachusetts Institute of Technology — continued to develop and refine the concept.

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn. The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

“This is a much more elegant solution because the medium in which you generate fusion is the medium in which you’re also driving all the current required to confine it,” Sutherland said.

There are several ways to create a magnetic field, which is crucial to keeping a fusion reactor going. The UW’s design is known as a spheromak, meaning it generates the majority of magnetic fields by driving electrical currents into the plasma itself. This reduces the amount of required materials and actually allows researchers to shrink the overall size of the reactor.

Other designs, such as the experimental fusion reactor project that’s currently being built in France — called Iter — have to be much larger than the UW’s because they rely on superconducting coils that circle around the outside of the device to provide a similar magnetic field. When compared with the fusion reactor concept in France, the UW’s is much less expensive — roughly one-tenth the cost of Iter — while producing five times the amount of energy.

The UW researchers factored the cost of building a fusion reactor power plant using their design and compared that with building a coal power plant. They used a metric called “overnight capital costs,” which includes all costs, particularly startup infrastructure fees. A fusion power plant producing 1 gigawatt (1 billion watts) of power would cost $2.7 billion, while a coal plant of the same output would cost $2.8 billion, according to their analysis.

“If we do invest in this type of fusion, we could be rewarded because the commercial reactor unit already looks economical,” Sutherland said. “It’s very exciting.”

Right now, the UW’s concept is about one-tenth the size and power output of a final product, which is still years away. The researchers have successfully tested the prototype’s ability to sustain a plasma efficiently, and as they further develop and expand the size of the device they can ramp up to higher-temperature plasma and get significant fusion power output.

The team has filed patents on the reactor concept with the UW’s Center for Commercialization and plans to continue developing and scaling up its prototypes.

Other members of the UW design team include Kyle Morgan of physics; Eric Lavine, Michal Hughes, George Marklin, Chris Hansen, Brian Victor, Michael Pfaff, and Aaron Hossack of aeronautics and astronautics; Brian Nelson of electrical engineering; and, Yu Kamikawa and Phillip Andrist formerly of the UW.

The research was funded by the U.S. Department of Energy.

For more detail click here.

Carbon Nanotube ‘Shock Absorbers’ Excel At Dampening Vibration – #IJSRD

Standard
Rensselaer Polytechnic Institute
Summary:
Research on a new class of nanostructured materials used to reduce vibrations in mechanical equipment and electronic devices, being developed by a team of scientists at Rensselaer Polytechnic Institute, will be featured in Nature Materials.
blogResearch Lets DO IT…. #IJSRD

Research on a new class of nanostructured materials used to reduce vibrations in mechanical equipment and electronic devices, being developed by a team of scientists at Rensselaer Polytechnic Institute, will be featured in Nature Materials.

“The nanoscale building blocks we have developed have both micro and macro applications,” said Nikhil Koratkar, assistant professor of mechanical, aerospace, and nuclear engineering at Rensselaer. “The new systems reduce and control vibrations within structures and will benefit the performance, safety, and reliability of future manufacturing equipment, sensitive laboratory equipment, and everyday electronic devices.”

The Rensselaer research team, led by Koratkar, added carbon nanotube fillers to traditional vibration reduction materials to enhance their energy dissipation capability. Adding large quantities of nanoscale fillers increases the amount of surface area, and thereby increases frictional sliding that occurs at the filler-to-filler interface. The result is a decrease in vibrations.

In 2004, Koratkar received a National Science Foundation (NSF) Faculty Early Career Development Award (CAREER) to fund the development of these new materials. Additional Rensselaer researchers on the project include Pulickel Ajayan, professor of materials science and engineering; Pawel Keblinksi, associate professor of materials science and engineering; and Jonghwan Suhr, a doctoral student in mechanical, aerospace, and nuclear engineering.

The research is available in the Nature Materials journal online, and will be published in an upcoming print edition of the journal.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute.Note: Materials may be edited for content and length.

For more information click here